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Abstract

Natural-convective heat transfer of oscillating vertical plates is related to industrial and technological applications.

In this paper, a numerical study is described of the laminar natural convection on a periodically oscillating vertical flat

plate heated at a uniform temperature. The exact solutions for the classical Stoke’s problem and the similarity solutions

(by Ostrach) are used to verify the numerical formulation. Of particular interest of this paper is the heat transfer

characteristics when the oscillatory velocity being close to the flow velocity in the velocity boundary layer under non-

oscillation condition. The results show that a two-fold increase in space-time averaged Nusselt number is achieved. And

it is found that the heat transfer for the problem under consideration significantly depends on the dimensionless

oscillation velocity, a relative size between the oscillation velocity and the flow velocity in the velocity boundary layer of

a stationary plate. The effects of the governing parameters on the heat transfer are investigated numerically. The heat

transfer enhancement is found to be increased with the dimensionless oscillation frequency, amplitude, the Prandtl

number, but decreased with the Grashof number.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past several decades, the oscillation-induced

heat and mass transport phenomena have been investi-

gated by a number of researchers due to its great

importance in the fields of bioengineering, ocean engi-

neering, and chemical industrial engineering et al. The-

oretical and experimental investigations of the mass

transfer of a diffusing substance for laminar oscillatory

flows in a tube have been carried out [1–6]. Their re-

searches demonstrated that, the diffusing substance will

disperse at rates much higher than suggested on pure

molecular diffusion grounds. The mechanism here is

the interaction of the cross-stream-dependent viscous

velocity distribution and the radially dependent con-
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centration leading to an enhanced diffusion coefficient.

The results on the enhanced diffusion in oscillatory vis-

cous laminar flows suggest that a similar phenomenon

should occur in heat conduction in view of the mathe-

matical similarity between heat conduction and

diffusion. Kurzweg et al. [7–9] confirmed this conjecture

and developed new technology for the heat transfer

enhancement by sinusoidal oscillation of a fluid, i.e. heat

transfer in a pipe connected to hot and cold reservoirs at

both ends has been highly enhanced by imposing sinu-

soidal oscillation. Very large effective axial heat con-

duction rates, exceeding those possible with heat pipes

by several orders of magnitude, were found to be

achievable [7]. Their systems have been proposed as

‘‘dream pipe’’. Ozawa and Kawamoto [10] conducted

numerical simulation and visualization experiment to

investigate the fundamental heat transfer mechanism of

the dream pipe. Furthermore, Nishio et al. [11] proposed

phase shifted oscillation-controlled heat transport tubes

to further increase the thermal conductivity.
ed.
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Nomenclature

A0 dimensionless oscillation amplitude, Eq. (6)

cp specific heat

f dimensional oscillation frequency

g gravity vector

Gr Grashof number, Gr ¼ gbðTw�T1ÞL3
v2

hx;t local instantaneous heat transfer coefficient

k thermal conductivity for fluid

L plate length

Nux;t local instantaneous Nusselt number, Eq.

(12)

Nux time-averaged local Nusselt number, Eq.

(13)

Nux0 local Nusselt number of a stationary plate

Nut space-averaged instantaneous Nusselt num-

ber, Eq. (14)

Nut0 space-averaged Nusselt number of a sta-

tionary plate

Nu space-time averaged Nusselt number, Eq.

(15)

P dimensional pressure of the fluid

Pr Prandtl number of the fluid

qx;t local instantaneous convective heat flux

T dimensional temperature

t dimensional time

u dimensional velocity component in the x
direction; dimensional oscillation velocity,

Eq. (5)

U dimensionless oscillation velocity, Eq. (11)

umax the maximum flow velocity in the velocity

boundary layer of a stationary plate

m dimensional velocity component in the y
direction

V dimensional velocity vector

w0 dimensionless oscillation frequency, Eq. (7)

x dimensional vertical coordinate; the dis-

placement of oscillation, Eq. (4)

x0 dimensional oscillation amplitude

X dimensionless vertical coordinate, Eq. (8)

y dimensional horizontal coordinate

Y dimensionless horizontal coordinate, Eq. (8)

Greek symbols

dmax the maximum thickness of velocity bound-

ary layer of a stationary plate

dt thickness of thermal boundary layer, Eq.

(16)

l dynamic viscosity

q density

b volumetric thermal expansion coefficient

v kinematic viscosity

/ dimensionless time (phase angle), Eq. (9)

h dimensionless temperature, Eq. (10)
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The obtained heat transfer data in tubes subjected to

oscillatory flow have been reported by Walsh et al. [12],

Liao et al. [13] and Fusegi [14], which all show signifi-

cantly enhanced heat transfer. The combination of

oscillatory flow and a series of sharp edges in a tube or

channel for heat transfer enhancement has already been

investigated by Brunold et al. [15], Howes et al. [16],

Mackly and Stonestreet [17], Stephens and Mackley [18].

This kind of oscillatory flow promotes chaotic mixing in

the tube, of which radial velocity components are sig-

nificant [15,16]. Mackley and Stonestreet reported that

significant heat transfer enhancement can be achieved in

tubes with a series of baffles due to oscillatory flows,

especially for low net flow Reynolds number and a 30-

fold improvement in Nusselt number was achieved [17].

The oscillatory flow and baffles both had to be present

to produce this effect. Stephen and Mackley presented

heat transfer data obtained from two oscillatory flow

methods, the first being the fluid oscillation in which the

baffles remain stationary, whereas the second employing

oscillating baffles [18]. The energy efficient heat transfer

can be obtained for the two situations, due to the

mechanisms of vortex interaction.
However, almost all the previous studies were rele-

vant to forced convection. And as far as the authors are

aware, no study on the natural convection heat transfer

under the conditions of oscillatory flow or oscillatory

wall appears to exist in the open literature. In addition,

heat transfer of oscillating vertical plates or channels

under natural convection conditions has a wide variety

of technological applications. For example, the upwell-

ing flow of deep seawater using the perpetual salt

fountain is a kind of natural convection produced by the

temperature and salinity differences between the sea-

water inside and outside a pipe [19]. The upwelling

velocity was strongly dependent on the heat transfer

between the pipe wall and the deep seawater in the pipe,

which is significantly enhanced by the oscillation of pipe

wall due to wave motion [20,21].

As the first step of a fundamental understanding and

estimation of the heat transfer characteristics of the

natural convection under the oscillating-wall conditions,

in this paper, numerical investigations using a simple

geometrical configuration––a vertical flat plate and

laminar flow were conducted. The vertical plate is heated

at a constant temperature. And the validity of the sim-
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ulation is examined through comparison with the theo-

retical results of the natural convection under non-

oscillation condition and the exact solutions of the

classical Stoke’s problem. The present investigation

mainly attempts to shed light on the oscillation-induced

heat transfer enhancement under such an oscillation

conditions that the oscillatory velocity and amplitude

are respectively close to the flow velocity in the bound-

ary layer and the thickness of velocity boundary layer

under non-oscillation condition. In addition, the effects

of governing parameters for the problem under consid-

eration on the heat transfer are presented, such as

oscillation frequency, amplitude and the Prandtl

number.
2. Formulation of numerical model

2.1. Mathematical formulation

Consider a vertical flat plate of length L oscillating

sinusoidally within a viscous fluid, as shown schemati-

cally in Fig. 1. A zero-thickness plate is assumed in the

simulation, at time t6 0, the plate is assumed to be at

rest and the fluid is assumed to be at the temperature T1
and the fluid is still. For time t > 0 the plate temperature

is suddenly raised to a higher constant temperature Tw
than the surrounding fluid T1, and the plate starts

moving in its own plane. Choose a Cartesian co-ordinate

system with x-axis along the moving plate in the upward

direction and y-axis perpendicular to it. The resultant
Fig. 1. Schematic diagram of oscillating-plate problem.
density difference in the presence of a gravitational field

causes the fluid to rise. It is assumed that (Tw � T1) is

sufficiently small that the Boussinesq approximation can

be made. It is also assumed that all over relevant ther-

modynamic and transport properties are independent

of temperature and that compressibility and dissi-

pation effects can be neglected. The subsequent fluid

motion can be described by the following governing

equations:

r � ðqVÞ ¼ 0; ð1Þ

oðqVÞ
ot

þr � ðqVVÞ ¼ lr2V�rP þ qg; ð2Þ

oðqT Þ
ot

þr � ðqVT Þ ¼ k
cp
r2T : ð3Þ

The domain of interest is a two-dimensional rectan-

gular geometry in which the plate is kept in the center.

The dimensions of height and width for the geometry are

respectively set seven and four times of the plate length,

as wide as enough to simulate the flow and heat transfer

in the case of the plate oscillating within an unbounded

viscous fluid. The left and right side walls of the geom-

etry are specified with uniform temperature T1, and the

top and bottom horizontal walls are assumed to be

adiabatic. The velocity boundary conditions considered

here are the non-slip conditions on all the solid walls.

The plate motion is governed by the time-dependent

equations, in which the displacement of oscillation and

the oscillatory velocity are in forms of

x ¼ x0 sinð2pftÞ; ð4Þ

u ¼ u0 cosð2pftÞ ¼ 2pfx0 cosð2pftÞ: ð5Þ

This oscillation boundary condition is governed by

such two dimensionless parameters:

A0 ¼ x0=dmax; ð6Þ

w0 ¼ dmax=
ffiffiffiffiffiffiffiffiffiffi
t=pf

p
; ð7Þ

where A0 is the dimensionless oscillation amplitude,

which represents a ratio of the oscillation amplitude to

the maximum of velocity boundary layer thickness of a

stationary plate. w0 is the dimensionless oscillation fre-

quency, which describes a comparison of the velocity

boundary layer thickness between non-oscillation and

oscillation condition. The value of
ffiffiffiffiffiffiffiffiffiffi
t=pf

p
approxi-

mately corresponds to the thickness of the velocity

boundary layer of an oscillating plate [22].

In addition, the dimensionless coordinate, time,

temperature and oscillation velocity are defined as

X ¼ x=L; Y ¼ y=
ffiffiffiffiffiffiffiffiffiffi
t=pf

p
; ð8Þ

/ ¼ 2pft; ð9Þ

h ¼ ðT � T1Þ=ðTw � T1Þ; ð10Þ
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U ¼ 2pfx0
umax

; ð11Þ

where U represents a ratio of the oscillation velocity to

the maximum flow velocity in the velocity boundary

layer of a stationary plate.

The oscillating-wall boundary conditions defined in

Eqs. (4) and (5) need to be specified for the concrete case

of interest. In this paper, only such an oscillation con-

dition is mainly investigated as the oscillatory velocity

and amplitude being respectively less than and close to

the flow velocity and the thickness of velocity boundary

layer under non-oscillation condition. Therefore, the

oscillation amplitude and velocity are respectively lim-

ited to A0 6 1 and U 6 1.

The definition of local instantaneous Nusselt number

along the heated plate is given as follows:

Nux;t ¼
hx;tL
k

¼ qx;tL
ðTw � T1Þk : ð12Þ

It should be noted that the value of Nux;t is a function

of the plate location and time. For the purpose of gen-

eralizing the spatially and temporally averaged heat

transfer data, based on the time and area weighted

average of a quantity, the time-averaged local Nus-

selt number Nux, the space-averaged instantaneous

Nusselt number Nut, and the space-time averaged

Nusselt number Nu can be defined respectively as

Nux ¼
1

2p

Z 2p

0

Nux;t d/; ð13Þ

Nut ¼
1

L

Z L

0

Nux;t dx; ð14Þ

Nu ¼ 1

2pL

Z 2p

0

Z L

0

Nux;t dxd/: ð15Þ
Fig. 2. Comparison of computed dimensionless results with the

similarity solution of Ostrach: (a) dimensionless temperature;

(b) dimensionless velocity.
2.2. Method of solution

A finite-volume numerical solution technique based

on integration over the control volume is used to solve

the model equations (1)–(3) subject to the appropriate

boundary conditions. This numerical technique is

essentially based on the previous work [23]. A structured

non-uniform grid arrangement was employed to solve

the discretized equations. The grid was made finer to-

wards the plate wall in order to model accurately the

solution variables with large gradients in the near-wall

region and capture adequately solutions under the

oscillation conditions. Because of the extremely thin

velocity and thermal boundary layer at a high dimen-

sionless oscillation frequency, a highly non-uniform grid

was deployed. The corresponding grid independence of

the results was established by employing various number

of mesh points, ranging from 35,000 to 150,000. The
time step independence of the solutions was tested, and

the typical implicit time step used is 0.01 s, which was

chosen as the uppermost value on balance of conver-

gence and CPU time. All the computations in this paper

were carried out on the SGI Origin2000 workstation in

the Advanced Fluid Information Research Center at

Tohoku University, Japan.

2.3. Validation of numerical solution

The formulation of numerical model above is ex-

pected to have a capability of reasonably dealing with

the laminar natural convection under an oscillating-wall

boundary condition. Therefore, for validation of the

proposed numerical model, the similarity solutions by

Ostrach [24] and the exact solutions for the classical

Stoke’s second problem [22] were used. A uniform

temperature boundary condition is applied on the plate

wall when using Ostrach’s solution, which describe the

velocity and temperature field of buoyant convection on



Fig. 3. Comparison of velocity distribution in the neighbour-

hood of an oscillating plate obtained from validation calcula-

tion against the Classic Stokes’s second problem: (a) f ¼ 1, (b)

f ¼ 10.
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a stationary vertical plate. A moving boundary condi-

tion u ¼ u0 cosð2pftÞ was used to compare with the exact

solutions for the Stoke’s problem, in which the flow

solutions about a flat plate which executes linear har-

monic oscillations parallel to itself are given. In the

geometry described above, air (Pr ¼ 0:7) and water

(Pr ¼ 10) were used as comprehensive validation efforts.

The computed solutions are shown in Figs. 2 and 3. The

agreement is considered to be acceptable, and therefore

the present model can be used with confidence.
Fig. 4. Comparison of the space-time averaged Nusselt number

between a stationary plate and an oscillating plate at a fixed

velocity (U ¼ 0:9) for Pr ¼ 0:7 and Gr ¼ 3� 107.
3. Results and discussion

An examination of the governing equations and

boundary conditions shows that the governing para-

meters for the problem under consideration are the

dimensionless oscillation frequency w0 and amplitude

A0, the Grashof number Gr (including two parame-

ters, the temperature difference between the plate and
ambient fluid and the plate length), and the Prandtl

number of fluid Pr. In order to study the effects of

the parameters on the heat transfer characteristics,

numerical calculations are carried out for a wide range

of various parameters. But the parameters for the

numerical treatment are chosen in such a way that the

Grashof number is less enough than the critical value

for the onset of turbulence, and that the magnitude of

oscillation velocity is similar to the flow velocity in

velocity boundary layer of a stationary plate. In this

work, the results of plate length ranging from 0.1 to 0.5

m, oscillation frequency from 0.2 to 10.0 Hz, amplitude

from 0.002 to 0.1 m and temperature difference from

0.2 to 20 �C are presented. The numerical simulations

were mainly performed for a laminar flow of air

(Pr ¼ 0:7).
In the present study, the main concern is focused on

the case of the oscillation velocity and amplitude close to

the flow velocity and the thickness of the velocity

boundary layer of a stationary plate. A comparison of

the space-time averaged Nusselt number for U ¼ 0:9
and for a stationary plate at Gr ¼ 3� 107 are shown in

Fig. 4. Fig. 4 is for the value of w0 from 18.0 to 80.0 and

corresponding oscillation amplitude A0 from 0.9 to 0.04,

which exactly falls to the range of the oscillation

boundary condition described above. The results show

that a two-fold increase in the space-time averaged

Nusselt number is achieved (relative to the average

Nusselt number of a stationary plate) under such an

oscillation boundary condition. Fig. 4 also shows that,

at a maintained oscillation velocity (U ¼ 0:9), the space-
time averaged Nusselt numbers only decrease a little

with the frequency w0. The oscillation amplitude drops

rapidly with the increase of frequency at a fixed oscil-

lation velocity, which may lead to such a change of the

average Nusselt number as shown in Fig. 4.
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At the fixed oscillation velocity (U ¼ 0:9), the varia-

tions of the space-averaged instantaneous Nusselt

number Nut and the local instantaneous Nusselt number

Nux;t at different dimensionless locations of the plate

during one-cycle for w0 ¼ 18:0 and A0 ¼ 0:9 are

respectively given in Fig. 5(a) and (b). Comparing the

two Nut curves in Fig. 5(a), it is seen that the space-

averaged instantaneous heat transfer can be enhanced

greatly throughout all the time of the whole cycle. In this

case, the value of w0 is 18.0, according to the physical

meaning of w0, implying that the thermal boundary

thickness becomes thinner than that of a stationary plate

due to such an oscillating wall, which maybe contribute

to the heat transfer enhancement. Fig. 5(a) also illus-

trates the change of Nut with time throughout the full

cycle. During per oscillation cycle, Nut decreases with

phase angle / until it reaches a minimum value around

/ ¼ 90. And then Nut begins to increase after / > 90 to

a maximum value around / ¼ 270. After / > 270, Nut
decreases gradually again to the same value at the
Fig. 5. Variations of Nusselt number during one oscillation

cycle for Pr ¼ 0:7, Gr ¼ 3� 107, A0 ¼ 0:9 and w0 ¼ 18:0: (a) the

space-averaged instantaneous Nusselt number; (b) the local

instantaneous Nusselt number along the plate.
beginning of the cycle, which implies a converged solu-

tion. It can be seen that the variation of Nut in one-cycle

is almost reversely symmetric with respect to / ¼ 180.

Fig. 5(b) demonstrates the time variation trends of

Nusselt number in a complete cycle, from the bottom

side to the top side of the plate. At each location, Nux;t
changes with phase angle / with a maximum value

(peak) and a minimum value (valley) during one-cycle.

And the closer to the two ends of the plate, the greater

the variation amplitude of the Nusselt number during

one-cycle is. Toward the middle of the plate, the time-

variation amplitude for Nux;t becomes vanishingly small.

It can be physically explained that the boundary layer

thickness of the middle part of the plate is more difficult

to be changed with time than that of the two end parts of

the plate. Fig. 5(b) also demonstrates that the heat

transfer at the top part of the plate is greatly increased,

which even exceeds those at lower locations of the plate.

The results for the space-time averaged Nusselt

numbers under a wide range of the oscillation velocities

U are shown in Fig. 6. It can be seen that the average

Nusselt number increases with the value of U . When the

oscillation velocity u0 is about ten times larger than the

magnitude of fluid flow velocity umax of a stationary

plate, about six-fold increase in the average Nusselt

number is observed. Even when u0 is the one-tenth of the

value of umax, about 10% increase over the non-oscilla-

tory heat transfer can be achieved. Therefore, by

imposing an oscillatory motion on the plate under the

buoyant convection, heat transfer performance is kept at

a high level. Moreover, heat transfer depends signifi-

cantly on the dimensionless oscillation velocity U im-

posed. Regulating the frequency and amplitude under

the certain buoyant convection, the heat transfer per-

formance can be brought to a predetermined level.
Fig. 6. Variation of the space-time averaged Nusselt number

with the dimensionless oscillation velocity (U ) for Pr ¼ 0:7 and

Gr ¼ 3� 107.
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The effects of the dimensionless frequency w0 and

amplitude A0 on the space-averaged instantaneous

Nusselt number Nut and the time-averaged local Nusselt

number Nux for G ¼ 3� 107 are shown in Fig. 7(a) and

(b). A comparison of case 1 (A0 ¼ 0:9 and w0 ¼ 18:0)
and case 2 (A0 ¼ 0:9 and w0 ¼ 14:0) shows that Nut and
Nux increase with the increase of w0 at a fixed value of

A0, which implies that the heat transfer rate increase

with the increase of frequency at a fixed oscillation

amplitude of the plate. This is because the thickness of

thermal boundary layer in an oscillatory condition is

given as [10]

dt ¼
ffiffiffiffiffiffiffiffiffiffi
t=pf

p
=Pr; ð16Þ

which implies that the thickness becomes thinner with

w0. Consequently, the heat transfer rate increases with

the value of w0. Similarly, a comparison of case 1

(A0 ¼ 0:9 and w0 ¼ 18:0) and case 3 (A0 ¼ 0:45 and

w0 ¼ 18:0) shows that the values of Nut and Nux increase
Fig. 7. Effect of the dimensionless oscillation frequency (w0)

and amplitude (A0) on the space-averaged instantaneous Nus-

selt number (Nut) and the time-averaged local Nusselt number

Nux for Pr ¼ 0:7 and Gr ¼ 3� 107.
with the increase of A0 at a fixed value of w0, which

implies that the heat transfer rate increases with the in-

crease of oscillation amplitude at a fixed value of fre-

quency. This can be explained based on the energy Eq.

(3). With fixed values of w0 and physical properties of

the fluid, the convection term in Eq. (3) becomes more

significant with the increasing value of A0. Physically, a

higher value of A0 means the plate is subjected to a

stronger convection during each cycle.

Transient temperature profiles during a complete

cycle under different oscillation frequency and amplitude

are presented in Fig. 8(a)–(c). Heat transfer rate is di-

rectly relevant to the temperature profiles, which change

with phase angle all the time through a whole cycle. A

comparison of the temperature profiles between Fig.

8(a) and (b) shows that temperature gradients near the

plate become steeper when the value of w0 is increased,

which implies that the heat transfer is enhanced with the

increase of the dimensionless oscillation frequency for a

fixed value of oscillation amplitude. If w0 is fixed and A0

is increased, the convection term in Eq. (3) will become

larger and will have some effect on the temperature

profile. This point is illustrated in a comparison of Fig.

8(a) and (c) that the temperature gradient near the plate

becomes larger under a higher oscillation amplitude.

The effect of the Grashof number (the temperature

difference is changed at a fixed plate length) on the time-

averaged local Nusselt number Nux for A0 ¼ 0:9 and

w0 ¼ 16:0 (the value of dmax at Gr ¼ 3� 107 is used as

the reference value when deriving A0 and w0) is shown in

Fig. 9, in which the ratios of the heat transfer (the value

of Nux) of the oscillation condition and non-oscillation

condition for three buoyant force at a fixed frequency

and amplitude are illustrated. It can be seen that the

ratios increase with the decrease of Grashof number. At

the fixed oscillation frequency and amplitude, under a

smaller buoyant force, a higher heat transfer enhance-

ment is obtained. The reason given for this behavior is

that the ratio of the oscillation velocity u0 and the flow

velocity umax in the boundary layer under non-oscillation

condition becomes smaller and smaller with the increase

of the temperature difference. In Fig. 9, corresponding to

the three Grashof number, 3 · 106, 3· 107 and 3· 108,
the ratios of u0 and umax are 3.45, 0.80 and 0.25,

respectively. As described in Fig. 6, the heat transfer

enhancement by an oscillating-wall condition is appre-

ciably related to the relative size of the value of u0 and

umax. Therefore, at a fixed oscillation velocity, the heat

transfer performance can be kept at a higher level for a

smaller buoyancy force. This phenomena is similar to

the conclusion shown in the research of forced convec-

tion [17], in which the greater advantage for the heat

transfer enhancement of oscillatory flow appears to be

found at low net flow Reynolds number.

The effect of the Grashof number (the plate length is

changed at a fixed temperature difference) on the



Fig. 8. Evolutions of the temperature profile (h) during one

oscillation cycle for Pr ¼ 0:7 and Gr ¼ 3� 107. (a) A0 ¼ 0:9,

w0 ¼ 18:0; (b) A0 ¼ 0:9, w0 ¼ 14:0; (c) A0 ¼ 0:45, w0 ¼ 18:0.

Fig. 9. Effect of the Grashof number on the time-averaged local

Nusselt number for Pr ¼ 0:7, A0 ¼ 0:9 and w0 ¼ 16:0.

Fig. 10. Effect of the plate length on the time-averaged local

heat transfer coefficient for Pr ¼ 0:7, A0 ¼ 0:9 and w0 ¼ 18:0

(L3=L1 ¼ 0:25, L2=L1 ¼ 0:5).
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time-averaged local heat transfer coefficient �hx for

A0 ¼ 0:9 and w0 ¼ 18:0 (the value of dmax at L1 is used as

the reference value when deriving A0 and w0) is shown in
Fig. 10, in which X represents the ratio of the local x
coordinate and the longest plate length L1. As shown in

this figure, when the plate length increases from L3 (0.25

L1) to L1, the time-averaged local heat transfer coefficient

in the bottom regions of the plates remains the same

value while those in the top regions increase with the

decrease of the plate length. Physically, the decrease of

the plate length at a fixed A0 and w0 means that the ratio

of the oscillation amplitude to the plate length becomes

larger, which lead to such a higher space-time averaged

Nusselt number for a shorter plate.

The effect of the Prandtl number of the fluid on the

space-averaged instantaneous Nusselt number Nut dur-
ing a complete cycle is shown in Fig. 11. The values of Pr

are taken as 0.7 and 10.0 which physically corresponds

to air and water, respectively. Fig. 11 illustrates the ra-

tios of Nut of an oscillatory plate and a stationary plate



Fig. 11. Effect of the Prandtl number of the fluid on the space-

averaged instantaneous Nusselt number during one oscillation

cycle.
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for air and water. The results show that a six-fold in-

crease in the average Nusselt number is achieved for

water, much larger than the ratio of air at the same

oscillation frequency and amplitude. In the case of Fig.

11, the dimensionless oscillation amplitude A0 are 0.9

and 1.3 for air and water, however, the values of w0 for

water is 38.8, two times larger than 18.0, that of air

(because of the kinematic viscosity of water being much

less than that of air), which implies that, the thickness of

thermal boundary layer for water is appreciably de-

creased larger than that using air as the working fluid.

Therefore, a higher heat transfer enhancement can be

achieved by using the fluid of larger Prandtl number

under a fixed oscillation boundary condition.
4. Concluding remarks

A numerical solution of the governing equations for

laminar natural convection on an periodically oscillating

plate has been presented. The following remarks are

made from the results of this study:

(1) Comparison of the existing theoretical data (the ex-

act solutions of the classical Stoke’s problem of a si-

nusoidally oscillating flat plate immersed within a

viscous fluid and the similarity solutions for laminar

natural convection on a stationary vertical plate)

and model prediction validates the model for rea-

sonably predicting laminar natural-convective flow

and heat transfer in the case of a vertical plate sub-

jected to a periodic oscillation.

(2) This paper focuses on the investigation of heat trans-

fer characteristics under such an oscillation condi-

tion as the magnitude of oscillation velocity close

to the flow velocity in the velocity boundary layer

of a stationary plate. The results show that a two-
fold increase in the space-time averaged Nusselt

number is obtained.

(3) The heat transfer performance of an oscillation plate

depends significantly on the dimensionless oscilla-

tion velocity, which represents a relative size be-

tween the oscillation velocity and the flow velocity

in the velocity boundary layer of a stationary plate.

The larger the dimensionless oscillation velocity, the

higher heat transfer can be achieved.

(4) The problem considered is governed by the follow-

ing independent parameters, the dimensionless oscil-

lation frequency w0 and amplitude A0, the Grashof

number Gr (including temperature difference DT
and plate length L), and the Prandtl number of fluid

Pr. The results reveal that the heat transfer enhance-
ment is increased with the increase of the frequency

w0, the amplitude A0 and the Prandtl number Pr, but
decreased with the increase of temperature difference

DT and plate length L.
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